qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = x ^ { 3 } - 2 x - 48$
$x$Intercept
$\left ( \dfrac { 2 } { 3 \left ( \dfrac { 2 \sqrt{ 11658 } } { 9 } + 24 \right ) ^ { \frac { 1 } { 3 } } } + \sqrt[ 3 ]{ \dfrac { 2 \sqrt{ 11658 } } { 9 } + 24 } , 0 \right )$
$y$Intercept
$\left ( 0 , - 48 \right )$
Derivative
$3 x ^ { 2 } - 2$
Seconde derivative
$6 x$
Local Minimum
$\left ( \dfrac { \sqrt{ 6 } } { 3 } , - 48 - \dfrac { 4 \sqrt{ 6 } } { 9 } \right )$
Local Maximum
$\left ( - \dfrac { \sqrt{ 6 } } { 3 } , - 48 + \dfrac { 4 \sqrt{ 6 } } { 9 } \right )$
Point of inflection
$\left ( 0 , - 48 \right )$
$ y=x^{3}-2x-48 $
$\dfrac {d } {d x } {\left( y \right)} = 3 x ^ { 2 } - 2$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 48 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo